Stringy Hodge numbers and p-adic Hodge theory

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stringy Hodge Numbers and P-adic Hodge Theory

Stringy Hodge numbers are introduced by Batyrev for a mathematical formulation of mirror symmetry. However, since the stringy Hodge numbers of an algebraic variety are defined by choosing a resolution of singularities, the well-definedness is not clear from the definition. Batyrev proved the well-definedness by using the theory of motivic integration developed by Kontsevich, Denef-Loeser. The a...

متن کامل

Stringy Hodge numbers of threefolds

Batyrev has defined the stringy E-function for complex varieties with at most log terminal singularities. It is a rational function in two variables if the singularities are Gorenstein. Furthermore, if the variety is projective and its stringy E-function is a polynomial, Batyrev defined its stringy Hodge numbers essentially as the coefficients of this E-function, generalizing the usual notion o...

متن کامل

Relative p-adic Hodge theory, I: Foundations

We initiate a new approach to relative p-adic Hodge theory based on systematic use of Witt vector constructions and nonarchimedean analytic geometry in the style of Berkovich. In this paper, we give a thorough development of φ-modules over a relative Robba ring associated to a perfect Banach ring of characteristic p, including the relationship between these objects and étale Zp-local systems an...

متن کامل

Seminar on p-adic Hodge Theory

3 Construction of BdR 4 3.1 Witt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Lifting to a Perfect Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 Carrying Out the Lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

HILBERT MODULAR FORMS AND p-ADIC HODGE THEORY

We consider the p-adic Galois representation associated to a Hilbert modular form. Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a place not dividing p is compatible with the local Langlands correspondence [C2]. In this paper, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory [Fo], as is shown for an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2004

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x04001095